Research on Green Concrete by utilizing FA and Slags

DR. Aissa BOUAISSI

School of Engineering, Computing and Mathematics (SECAM University of Plymouth

Outlines of FA-GGBS-HMNS based geopolymer

Part i
OPC Statistics

Geopolymers
By-Products Material-Why?
Geopolymerization process
Reaction mechanism

Part iii
My Research Project
Objectives
Research Approach
Results

Outlines of FA-GGBS-HMNS based geopolymer

Part i
OPC Statistics

Part ii
Geopolymers
By-Products Material-Why?
Geopolymerization process

Part iii
My Research Project
Objectives
Research Approach
Results

Outlines of FA-GGBS-HMNS based geopolymer

OPC Statistics!

OPC issues!

- Consumption of natural materials which need quarrying
- Very energy intensive (125 L of fuel, 118 kwh for 1 tonne of OPC)
- 8% worlds CO2 from concrete production, 6 Billion tonnes of CO2 in 2015 (3x more than global aviation)
- Poor immobilization of contaminants
- Low chemical resistance

Part ii. Geopolymers

• It is a family of mineral binders with chemical composition similar to zeolites but with an amorphous microstructure.

3D structure of Zeolite (*)

Geopolymer concrete (GPC)

Palm oil fuel ash

Microstructural development of GP binder

C.J. Shi et al. (2011): Cement and Concrete Research 41, 750-763.

By-products material-why?

Fly ash GGBS HMNS

...By-products production

Fly ash	GGBFS	HMNS
In the United States about 131 Mt of fly ash are produced annually	1.6 bn tonnes of iron and steel production worldwide	The production of 1 tonne of steel leads to generate between 0.2 and 0.4 tonne of furnace slag.
125 Mt/year in the EU, 300 Mt/year China & India (*)	produces around 250Mt of slag.(*)	In China, the annual generation of nickel slag is about 800,000 tonnes. (*)

(*)Back to Reference page for more details

Disposal

Part iii. Details of research project

Research approach

Micro/nano-scale investigation

Particle size distribution analysis (**PSA**)

X-ray diffraction characterization (**XRD**)

Fourier transform infrared spectroscopy

analysis (**FTIR**)

Scanning electron microscopy imaging

(SEM/EDX)

Optical microscopy (**OM**)

Macro-scale Study

Uniaxial compressive strength test

Split tensile strength test

Setting time

Workability

Durability test

Residual strength after high temperature

Dynamic behaviour

Compressive strength of GP paste

Fresh GP concrete test

...Testing of fresh GP concrete

Compressive strength test

10 cm cube 15 cm cube

Tensile strength test

Flexural strength test ASTM c78 (2010) (150x150x500 mm size)

$$f_r = \frac{PL}{bd^2}$$

Split strength test ASTM C496 (2011) (D=150 mm, L=300 mm)

$$f_{ct} = \frac{2P}{\pi LD}$$

Testing of hardened GP concrete

...Testing of hardened GP concrete

Compressive strength

<u>Split-tensile strength</u>

B, C and D= Ref

Rapid chloride migration test (RCM)

Chloride migration test (RCM) (cont.)

Residual strength after elevated temperature exposure

Residual strength test

Impact strength test machine

Preparation of disk specimens ($\sim \phi 35x18$)

Preparation of specimens Specimen diameters (33, 36 and 37 mm, with 18mm thickness

Group a = 2 m/s

Group b = 4 m/s

Group c = 6 m/s

Data capture before and after filtering

Dynamic σ–ε curves (FA-GGBS-HMNS based GP paste)

Failure Patterns

Strain energy absorbed in impact

Microstructural analysis (SEM)

Material characteristic analysis (EDX)

Conclusions

- The future trend of geopolymers research shall focus on the understanding of polymerization mechanisms and this will **standardize geopolymers for commercial production**.

- This might include the route of geopolymer synthesis with designable **strength** and **properties**, for example, the material with suitable activators and curing conditions, etc.

References

- Bapat .J . D.(2012) 'Mineral Admixtures in Cement and Concrete' CRC Press, Taylor & Francis Group, LLC, US
- Davidovits .J.(2005) 'Geopolymer Green Chemistry and Sustainable Development Solutions': Geopolymer institute, Saint Quentin, France.
- Taylor .H.F.W. (1990) 'Cement Chemistry', ACADEMIC PRESS, London NW I 7DX.
- Yahya, Z. *et al.* (2013) 'Chemical and Physical Characterization of Boiler Ash from Palm Oil Industry Waste for Geopolymer Composite', *Revista de Chimie*, (12), pp. 32–34
- Yang, T., Yao, X. and Zhang, Z. (2014) 'Geopolymer prepared with high-magnesium nickel slag: Characterization of properties and microstructure', *Construction and Building Materials*, 59, pp. 188–194. doi: 10.1016/j.conbuildmat.2014.01.038
- Zhang, Z. *et al.* (2017) 'Conversion of local industrial wastes into greener cement through geopolymer technology: A case study of high-magnesium nickel slag', *Journal of Cleaner Production*. Elsevier Ltd, 141, pp. 463–471. doi: 10.1016/j.jclepro.2016.09.147.
- Wallah, S.E, Rangan, B.V. (2006) 'Low-Calcium fly ash-based geopolymer concrete': Long-term properties. Curtin University of Technology, Australia
- http://www.flyash.com/
- http://www.mining.com/
- https://insights.globalspec.com/article/7809/high-performance-slag-materials-a-steel-industry-byproduct